УДК 517.555

A. I. Bandura

A MODIFIED CRITERION OF BOUNDEDNESS L-INDEX IN DIRECTION

A. I. Bandura. A modified criterion of boundedness of L-index in direction, Mat. Stud. 39 (2013), 99–102.

A new criterion of boundedness of L-index in direction is obtained.

А. И. Бандура. *Модифицированный критерий ограниченности L-индекса по направлению* // Мат. Студії. – 2013. – Т.39, №1. – С.99–102.

Получен новый критерий ограниченности L-индекса по направлению.

1. Introduction. Let L(z) be a positive continuous function on \mathbb{C}^n , and let $\mathbf{b} \in \mathbb{C}^n \setminus \{0\}$. An entire function of F(z), $z \in \mathbb{C}^n$, is called (see [1]–[3]) a function of bounded L-index in the direction \mathbf{b} , if there exists $m_0 \in \mathbb{Z}_+$ such that for every $m \in \mathbb{Z}_+$ and every $z \in \mathbb{C}^n$ the following inequality is valid:

$$\frac{1}{m!L^m(z)} \left| \frac{\partial^m F(z)}{\partial \mathbf{b}^m} \right| \le \max \left\{ \frac{1}{k!L^k(z)} \left| \frac{\partial^k F(z)}{\partial \mathbf{b}^k} \right| : 0 \le k \le m_0 \right\}, \tag{1}$$

where

$$\frac{\partial^0 F(z)}{\partial \mathbf{b}^0} = F(z), \ \frac{\partial F(z)}{\partial \mathbf{b}} = \sum_{i=1}^n \frac{\partial F(z)}{\partial z_j} b_j = \langle \mathbf{grad} \ F, \ \overline{\mathbf{b}} \rangle, \\ \frac{\partial^k F(z)}{\partial \mathbf{b}^k} = \frac{\partial}{\partial \mathbf{b}} \Big(\frac{\partial^{k-1} F(z)}{\partial \mathbf{b}^{k-1}} \Big), \ k \geq 2.$$

The least such integer $m_0 = m_0(\mathbf{b})$ is called the *L*-index in the direction $\mathbf{b} \in \mathbb{C}^n$ of the function F(z) and is denoted by $N_{\mathbf{b}}(F, L) = m_0$.

In the case of n=1 and $L(z)=l(z),\ z\in\mathbb{C}$, we obtain the definition of a function of bounded l-index, and in the case $L(z)\equiv 1$ we get the definition of a function of bounded index.

For $\eta > 0$, $z \in \mathbb{C}^n$, $\mathbf{b} = (b_1, \dots, b_n) \in \mathbb{C}^n \setminus \{0\}$ and a function $L : \mathbb{C}^n \to \mathbb{R}_+$ we define

$$\lambda_1^{\mathbf{b}}(z, t_0, \eta) = \inf \left\{ \frac{L(z + t\mathbf{b})}{L(z + t_0\mathbf{b})} : |t - t_0| \le \frac{\eta}{L(z + t_0\mathbf{b})} \right\},$$

 $\lambda_1^{\mathbf{b}}(z,\eta) = \inf\{\lambda_1^{\mathbf{b}}(z,t_0,\eta)\colon \ t_0 \in \mathbb{C}\}, \ \lambda_1^{\mathbf{b}}(\eta) = \inf\{\lambda_1^{\mathbf{b}}(z,\eta)\colon \ z \in \mathbb{C}^n\}, \ \text{and also}$

$$\lambda_2^{\mathbf{b}}(z, t_0, \eta) = \sup \left\{ \frac{L(z + t\mathbf{b})}{L(z + t_0\mathbf{b})} : |t - t_0| \le \frac{\eta}{L(z + t_0\mathbf{b})} \right\},$$

 $2010\ Mathematics\ Subject\ Classification; 30 D20,\ 32 A15.$

Keywords: entire function of several variables, bounded L-index in direction. doi:10.30970/ms.39.1.99-102

 $\lambda_2^{\mathbf{b}}(z,\eta) = \sup\{\lambda_2^{\mathbf{b}}(z,t_0,\eta) \colon t_0 \in \mathbb{C}\}, \ \lambda_2^{\mathbf{b}}(\eta) = \sup\{\lambda_2^{\mathbf{b}}(z,\eta) \colon z \in \mathbb{C}^n\}.$

By $Q^n_{\mathbf{b}}$ we denote the class of all functions L for which the following condition holds for all $\eta \geq 0$

$$0 < \lambda_1^{\mathbf{b}}(\eta) \le \lambda_2^{\mathbf{b}}(\eta) < +\infty.$$

In a recent paper [1] the authors prove the following criterion of boundedness of the L-index in direction, which will be used several times throughout this paper.

Theorem 1 ([1]). Let $L \in Q_{\mathbf{b}}^n$. An entire function F(z), $z \in \mathbb{C}^n$, is of bounded L-index in the direction $\mathbf{b} \in \mathbb{C}^n$ if and only if for each $\eta > 0$ there exist numbers $n_0 = n_0(\eta) \in \mathbb{Z}_+$ and $P_1 = P_1(\eta) \ge 1$ such that for every $t_0 \in \mathbb{C}$ and every $z \in \mathbb{C}^n$ there exists $k_0 = k_0(t_0, z) \in \mathbb{Z}_+$, with $0 \le k_0 \le n_0$ and the inequality

$$\max \left\{ \left| \frac{\partial^{k_0} F(z + t\mathbf{b})}{\partial \mathbf{b}^{k_0}} \right| : |t - t_0| \le \frac{\eta}{L(z + t_0\mathbf{b})} \right\} \le P_1 \left| \frac{\partial^{k_0} F(z + t_0\mathbf{b})}{\partial \mathbf{b}^{k_0}} \right|$$

holds.

The notation $L \simeq L^*$ means that for some $\theta_1, \theta_2, 0 < \theta_1 \le \theta_2 < +\infty$ and all $z \in \mathbb{C}^n$ the inequality $\theta_1 L(z) \le L^*(z) \le \theta_2 L(z)$ holds.

We will need the following theorem from [1].

Theorem 2 ([1]). Let $L, L^* \in Q_b^n$, $L \times L^*$. An entire function F(z), $z \in \mathbb{C}^n$, is of bounded L^* -index in the direction **b** if and only if F is of bounded L-index in the direction **b**.

In [1] we prove the following criteria of boundedness of the *L*-index in direction in the form of an estimate of the maximum modulus on a larger circle by the maximum modulus on a smaller one.

Theorem 3 ([1]). Let $L \in Q_{\mathbf{b}}^n$. An entire function F(z) in \mathbb{C}^n is a function of bounded L-index in the direction $\mathbf{b} \in \mathbb{C}^n$ if and only if for any r_1 and r_2 such that $0 < r_1 < r_2 < +\infty$, there exists a number $P_1 = P_1(r_1, r_2) \ge 1$ such that for each $z^0 \in \mathbb{C}^n$ and $t_0 \in \mathbb{C}$ the next inequality is valid

$$\max \left\{ |F(z^{0} + t\mathbf{b})| \colon |t - t_{0}| = \frac{r_{2}}{L(z^{0} + t_{0}\mathbf{b})} \right\} \le$$

$$\le P_{1} \max \left\{ |F(z^{0} + t\mathbf{b})| \colon |t - t_{0}| = \frac{r_{1}}{L(z_{0} + t_{0}\mathbf{b})} \right\}.$$
(2)

Theorem 4 ([1]). Let $L \in Q_{\mathbf{b}}^n$. An entire function F(z) in \mathbb{C}^n is a function of bounded L-index in the direction $\mathbf{b} \in \mathbb{C}^n$ if and only if there exist numbers r_1 and r_2 , $0 < r_1 < 1 < r_2 < +\infty$, and $P_1 \ge 1$ such that for all $z^0 \in \mathbb{C}^n$ and $t_0 \in \mathbb{C}$ the inequality (2) holds.

These theorems distinguish the universal quantifier and the existential quantifiers for r_1 and r_2 such that $0 < r_1 < r_2 < +\infty$.

Hence the following **question** arises naturally: is it possible to change the quantifiers in the other criteria of boundedness of L-index in direction (see [1]).

2. Main result. Using Fricke's idea from [4] a modification of Theorem 1 is obtained.

Theorem 5. Let $L \in Q_{\mathbf{b}}^n$. An entire function F(z), $z \in \mathbb{C}^n$, is a function of bounded L-index in the direction $\mathbf{b} \in \mathbb{C}^n$ if and only if there exist constants $\eta > 0$, $n_0 = n_0(\eta) \in \mathbb{Z}_+$ and $P_1 = P_1(\eta) \ge 1$ such that for every $t_0 \in \mathbb{C}$ and every $z \in \mathbb{C}^n$ there exists $k_0 = k_0(t_0, z) \in \mathbb{Z}_+$, with $0 \le k_0 \le n_0$ and the inequality

$$\max \left\{ \left| \frac{\partial^{k_0} F(z + t\mathbf{b})}{\partial \mathbf{b}^{k_0}} \right| : |t - t_0| \le \frac{\eta}{L(z + t_0\mathbf{b})} \right\} \le P_1 \left| \frac{\partial^{k_0} F(z + t_0\mathbf{b})}{\partial \mathbf{b}^{k_0}} \right|$$

holds.

Proof of Theorem 5. Necessity. If F(z) is of bounded L-index in the direction **b**, then it follows directly from Theorem 1 that the necessity condition of Theorem 5 is satisfied. Sufficiency. Suppose that there exists $\eta > 0$, $n_0 = n_0(\eta) \in \mathbb{Z}_+$ and $P_1 = P_1(\eta) \ge 1$ such that for each $t_0 \in \mathbb{C}$ and each $z \in \mathbb{C}^n$ there exists $k_0 = k_0(t_0, z) \in \mathbb{Z}_+$, with $0 \le k_0 \le n_0$ and

$$\max \left\{ \left| \frac{\partial^{k_0} F(z + t\mathbf{b})}{\partial \mathbf{b}^{k_0}} \right| : |t - t_0| \le \frac{\eta}{L(z + t_0\mathbf{b})} \right\} \le P_1 \left| \frac{\partial^{k_0} F(z + t_0\mathbf{b})}{\partial \mathbf{b}^{k_0}} \right|. \tag{3}$$

If $\eta > 1$ then we choose $j_0 \in \mathbb{N}$ such that $P_1 \leq \eta^{j_0}$. But if $\eta \in (0; 1]$ then we choose $j_0 \in \mathbb{N}$ such that $\frac{j_0!k_0!}{(j_0+k_0)!}P_1 < 1$. Such a j_0 exists because

$$\frac{j_0!k_0!}{(j_0+k_0)!}P_1 = \frac{k_0!}{(j_0+1)(j_0+2)\cdot\ldots\cdot(j_0+k_0)}P_1 \to 0, \ j_0 \to \infty.$$

Applying Cauchy's formula to the function $F(z + t\mathbf{b})$ as a function of one complex variable t with $j \geq j_0$ we have that for each $t_0 \in \mathbb{C}$ and each $z \in \mathbb{C}^n$ there exists an integer $k_0 = k_0(t_0, z)$ with $0 \leq k_0 \leq n_0$

$$\frac{\partial^{k_0+j}F(z+t_0\mathbf{b})}{\partial\mathbf{b}^{k_0+j}} = \frac{j!}{2\pi i} \int_{|t-t_0| = \frac{\eta}{L(z+t_0\mathbf{b})}} \frac{1}{(t-t_0)^{j+1}} \frac{\partial^{k_0}F(z+t\mathbf{b})}{\partial\mathbf{b}^{k_0}} dt.$$

Therefore, in view of (3), we have

$$\frac{1}{j!} \left| \frac{\partial^{k_0+j} F(z+t_0 \mathbf{b})}{\partial \mathbf{b}^{k_0+j}} \right| \le \frac{L^j(z+t_0 \mathbf{b})}{\eta^j} \max \left\{ \left| \frac{\partial^{k_0} F(z+t \mathbf{b})}{\partial \mathbf{b}^{k_0}} \right| : |t-t_0| = \frac{\eta}{L(z+t_0 \mathbf{b})} \right\} \le \\
\le P_1 \frac{L^j(z+t_0 \mathbf{b})}{\eta^j} \left| \frac{\partial^{k_0} F(z+t_0 \mathbf{b})}{\partial \mathbf{b}^{k_0}} \right|, \tag{4}$$

that is by the choice of j_0 for $\eta > 1$

$$\frac{1}{(k_0+j)!L^{k_0+j}(z+t_0\mathbf{b})} \left| \frac{\partial^{k_0+j}F(z+t_0\mathbf{b})}{\partial \mathbf{b}^{k_0+j}} \right| \leq \frac{j!k_0!}{(j+k_0)!} \frac{P_1}{\eta^j} \frac{1}{k_0!L^{k_0}(z+t_0\mathbf{b})} \left| \frac{\partial^{k_0}F(z+t_0\mathbf{b})}{\partial \mathbf{b}^{k_0}} \right| \leq \frac{1}{k_0!L^{k_0}(z+t_0\mathbf{b})} \left| \frac{\partial^{k_0}F(z+t_0\mathbf{b})}{\partial \mathbf{b}^{k_0}} \right| \leq \frac{1}{k_0!L^{k_0}(z+t_0\mathbf{b})} \left| \frac{\partial^{k_0}F(z+t_0\mathbf{b})}{\partial \mathbf{b}^{k_0}} \right| \tag{5}$$

for all $j \geq j_0$.

Since by the assumptions of the theorem the numbers $n_0 = n_0(\eta)$, $j_0 = j_0(\eta)$ are independent of z and t_0 , and $z \in \mathbb{C}^n$ and $t_0 \in \mathbb{C}$ are arbitrary, the inequality (5) is equivalent to the assertion that F(z) is of bounded L-index in the direction \mathbf{b} and $N_{\mathbf{b}}(F, L) \leq n_0 + j_0$. If $\eta \in (0, 1)$ then in view of (4) we have for all $j \geq j_0$

$$\frac{1}{(k_0+j)!L^{k_0+j}(z+t_0\mathbf{b})} \left| \frac{\partial^{k_0+j} F(z+t_0\mathbf{b})}{\partial \mathbf{b}^{k_0+j}} \right| \leq \frac{j!k_0!P_1}{(j+k_0)!} \frac{1}{\eta^j k_0!L^{k_0}(z+t_0\mathbf{b})} \left| \frac{\partial^{k_0} F(z+t_0\mathbf{b})}{\partial \mathbf{b}^{k_0}} \right| \leq \frac{1}{\eta^j k_0!L^{k_0}(z+t_0\mathbf{b})} \left| \frac{\partial^{k_0} F(z+t_0\mathbf{b})}{\partial \mathbf{b}^{k_0}} \right|$$

or, by the choice of j_0 ,

$$\frac{1}{(k_0+j)!} \frac{\eta^{k_0+j}}{L^{k_0+j}(z+t_0\mathbf{b})} \left| \frac{\partial^{k_0+j} F(z+t_0\mathbf{b})}{\partial \mathbf{b}^{k_0+j}} \right| \leq \frac{1}{k_0!} \frac{\eta^{k_0}}{L^{k_0}(z+t_0\mathbf{b})} \left| \frac{\partial^{k_0} F(z+t_0\mathbf{b})}{\partial \mathbf{b}^{k_0}} \right|.$$

Thus the function F is of bounded \tilde{L} -index in the direction \mathbf{b} , where $\tilde{L}(z) = \frac{L(z)}{\eta}$. Then, by Theorem 2, F is of bounded L-index in the direction \mathbf{b} .

REFERENCES

- 1. Bandura A.I., Skaskiv O.B. Entire function of bounded L-index in direction// Mat. Stud. 2007. V.27, Nº1. P. 30–52. (in Ukrainian)
- 2. Bandura A.I., Skaskiv O.B. Entire function of bounded and unbounded L-index in direction// Mat. Stud. 2007. V.27, №1. P. 211–215. (in Ukrainian)
- 3. Bandura A.I., Skaskiv O.B. Sufficient sets for boundedness L-index in direction for entire function// Mat. Stud. − 2008. − V.30, №2. − P. 177–182.
- 4. Fricke G.H. Entire functions of locally slow growth// Journal d'Analyse Mathematique. 1975. V.28, N1. P. 101–122.

Department of higher mathematics Ivano-Frankivs'k National Technical University of Oil and Gas andriykopanytsia@gmail.com

Received 25.11.2012